Continuous-wave room-temperature diamond maser
نویسندگان
چکیده
منابع مشابه
Proposal for a room-temperature diamond maser
The application of masers is limited by its demanding working conditions (high vacuum or low temperature). A room-temperature solid-state maser is highly desirable, but the lifetimes of emitters (electron spins) in solids at room temperature are usually too short (∼ns) for population inversion. Masing from pentacene spins in p-terphenyl crystals, which have a long spin lifetime (∼0.1 ms), has b...
متن کاملRoom-temperature continuous-wave 1.55 lm GaInNAsSb laser on GaAs
Introduction: The proposal by Kondow and co-workers [1] of GaInNAs active regions for temperature insensitive GaAs-based lasers has led to significant success in the 1.3 mm regime, and performance currently exceeds that of competing InP-based devices. This effort has yielded InGaAs=GaAs lasers that emit out to 1.25 mm with exceedingly lowthreshold current densities [2], and emission has been ex...
متن کامل1.4 µm continuous-wave diamond Raman laser.
The longest wavelength (~1.4 µm) emitted by a diamond Raman laser pumped by a semiconductor disk laser (SDL) is reported. The output power of the intracavity-pumped Raman laser reached a maximum of 2.3 W with an optical conversion efficiency of 3.4% with respect to the absorbed diode pump power. Narrow Stokes emission (FWHM <0.1 nm) was attained using etalons to limit the fundamental spectrum t...
متن کاملGas sensing properties of nanocrystalline diamond at room temperature
This study describes an integrated NH3 sensor based on a hydrogenated nanocrystalline diamond (NCD)-sensitive layer coated on an interdigitated electrode structure. The gas sensing properties of the sensor structure were examined using a reducing gas (NH3) at room temperature and were found to be dependent on the electrode arrangement. A pronounced response of the sensor, which was comprised of...
متن کاملElectrically driven single-photon source at room temperature in diamond
Single-photon sources that provide non-classical light states on demand have a broad range of applications in quantum communication, quantum computing and metrology1. Singlephoton emission has been demonstrated using single atoms2, ions3, molecules4, diamond colour centres5,6 and semiconductor quantum dots7–11. Significant progress in highly efficient8,11 and entangled photons9 sources has rece...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature
سال: 2018
ISSN: 0028-0836,1476-4687
DOI: 10.1038/nature25970